skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Flores, Alejandro_N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Headwater catchments play a vital role in regional water supply and ecohydrology, and a quantitative understanding of the hydrological partitioning in these catchments is critically needed, particularly under a changing climate. Recent studies have highlighted the importance of subsurface critical zone (CZ) structure in modulating the partitioning of precipitation in mountainous catchments; however, few existing studies have explicitly taken into account the 3D subsurface CZ structure. In this study, we designed realistic synthetic catchment models based on seismic velocity‐estimated 3D subsurface CZ structures. Integrated hydrologic modeling is then used to study the effects of the shape of the weathered bedrock and the associated storage capacity on various hydrologic fluxes and storages in mountainous headwater catchments. Numerical results show that the weathered bedrock affects not only the magnitude but also the peak time of both streamflow and subsurface dynamic storage. 
    more » « less